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Abstract: Polarization-resolved second harmonic generation (P-SHG) microscopy is able to 
probe the sub-micrometer structural organization of myosin filaments within skeletal muscle. 
In this study, P-SHG microscopy was used to analyze the structural consequences of sepsis, 
which is the main cause of the critical illness polyneuromyopathy (CIPNM). Experiments 
conducted on two populations of rats demonstrated a significant difference of the anisotropy 
parameter between healthy and septic groups, indicating that P-SHG microscopy is promising 
for the diagnosis of CIPNM. The difference, which can be attributed to a change of myosin 
conformation at the sub-sarcomere scale, cannot be evidenced by classical SHG imaging. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Among muscle pathologies, critical illness polyneuromyopathy (CIPNM) [1] affects roughly 
30% of patients in intensive care units (ICU) and is composed of many heterogeneous 
disorders that lead to muscle weakness and failure from weaning of mechanical ventilation. 
Sepsis is an inappropriate systemic inflammatory response syndrome, associated with 
infection. It could lead to dysfunction of multiple organ including striated muscles. Sepsis is 
one of the main causes of neuromyopathy acquired in ICU and can lead to long-term sequelae 
at the muscular level. There is an early prognosis with increased morbidity and cost of 
hospitalization [2] but also deaths from acute respiratory failure [3]. There is also a late 
prognosis with sometimes significant sequelae up to a locomotor deficit impacting the quality 
of life [4] and may persist for several years after the healing of the initial pathology. The 
pathophysiology of neuromyopathy acquired in ICU is complex and incompletely known. 
Chronic sepsis has been shown to induce changes in the mechanical characteristics of the 
muscle with in particular, a decrease in active force and an increase in passive force [5]. This 
could be due to modifications of protein expression or phosphorylation, disorganization of 
myofibrils and/or residual interactions between contractile proteins (actin, myosin). Currently, 
consequences of sepsis on the structural organization of muscular proteins at the microscopic 
and sub-microscopic scale are difficult to investigate with classical biological methods [6]. 

Second harmonic generation (SHG) microscopy [7] is a laser scanning technique used as a 
powerful tool for label-free ex vivo or in vivo imaging of fibrous proteins such as collagen and 
myosin [8]. SHG is highly sensitive to the microscopic and mesoscopic orders of these 
noncentrosymmetric supramolecular arrangements and also to their orientations with respect 
to the polarization of the excitation laser beam. Knowledge of the polarization-resolved 
second harmonic generation (P-SHG) response of such molecular assemblies provides 
additional information that can be used to reveal geometrical details up to the molecular level 
scale [9–13]. Typically the anisotropy parameter ρ, defined as the ratio χzzz/χzxx between the 
two principal components of the χ(2)-tensor of collagen and myosin, and associated to the 
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geometrical distribution of second harmonic emitters within the focal volume [9–11], is 
deduced from P-SHG experiments. In muscle, it was shown that the anisotropy parameter ρ 
could be convenient to detect structural organization of myosin within the sarcomeres [14–
16]. Modifications of myosin conformation are probably at the origin of some functional 
changes observed in the case of sepsis [17], for example the increase of the passive force and 
decrease of active force on a fast muscle like the Extensor Digitorum Longus (EDL). 

Although several P-SHG experiments were conducted to investigate the microstructure of 
myosin filaments within muscle [10,13–16,18–20], few of these studies take place in the 
context of specific muscle pathology and none in the case of sepsis-induced 
polyneuromyopathy. In this article, we present results of P-SHG experiments conducted over 
a large set of optical sections made of rat EDL muscles taken from two populations, one 
healthy and the other afflicted by chronic sepsis. 

2. Material and methods 

2.1 Animal samples 

A process of chronic sepsis induction by caecal ligation-perforation in the rat was used [5,6]. 
Fourteen 3 months-old female Wistar rats were sacrificed in respect with the local committee 
of ethic protocol (authorization n°02076.01) and divided into 2 groups (control and septic) 
composed of 7 animals each. Rats of the control group underwent the same operation as the 
septic group but without ligation and caecal perforation. Rats were sacrificed 7 days after 
operation, enabling to qualify the sepsis as chronic. EDL muscles were removed from right 
and left hind limb, fixed in 4% paraformaldehyde at the resting length and embedded in OCT 
compound. Histological slices of 10µm thickness were produced by a cryotom in the 
longitudinal direction of muscles in order to form optical sections of ~1x0.2cm2 for imaging 
under the P-SHG microscope. Two optical sections per muscle were realized, resulting in 4 
optical sections per specimen (right and left hind limb), i.e. 28 optical sections per group. 

2.2 Microscopy setup 

The experimental setup is depicted in Fig. 1 and consists of a laser scanning unit (FV300, 
Olympus) mounted on an upright microscope (BX51WI, Olympus). The light source is a 
horizontally polarized Ti:Sapphire laser (Verdi-V5/Mira900F, Coherent) tuned at 830nm for 
all experiments and attenuated with a 0.6ND neutral density filter to avoid degradation of the 
samples. Light was focused on the sample by a 20X/0.75NA microscope objective 
(UPlanSApo, Olympus), resulting in experimental lateral and axial resolutions (FWHM) of 
respectively ~0.5µm and ~1.7µm, measured with fluorescent microspheres (Polybead 
polystyrene red dyed microsphere 0.20µm, PolySciences Inc.). A 60mW optical power was 
measured at the sample plane with a microscope slide thermal sensor (S175C, Thorlabs). 
Second harmonic light was collected in the forward direction by a 0.7NA condenser and 
detected through a 415/10nm FWHM bandpass filter by an external analog PMT module 
(H10721-210, Hamamatsu) whose voltage was adjusted to optimize signal to noise ratio 
while avoiding saturation of pixels. SHG images were acquired with 12-bit intensity 
resolution and 1024x1024 pixel2 definition. The pixel dwell-time was about 8μs and a 5-time 
zoom was used resulting in a 142x142µm2 field of view for the images. 

P-SHG images were obtained according to the method proposed in [13]. Four P-SHG 
images were sequentially acquired, corresponding to 4 linearly polarized states of the 
excitation laser beam (0°, 45°, 90° and 135° with respect to the horizontal image side) 
produced by a zero-order half-wave quartz plate (25.4mm diameter, 830.0nm λ/2, Edmunds 
Optics) mounted in a motorized rotating stage (PR50CC, Newport) and set just above the 
entrance pupil of the microscope objective. The polarization extinction ratio of the 
fundamental laser beam was measured at the sample plane using the microscope slide thermal 
sensor and a high acceptance angle polarizer (ColorPol VIS-IR polarizer, Codixx). The 
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extinction ratio was very close for all input polarizations with a value of 180:1 which means 
4.2° residual ellipticity. We developed a custom LabView program (National Instruments) to 
control and synchronize the 4 images acquisition sequence with the corresponding 4 input 
polarization states. 

 

Fig. 1. Experimental microscope setup. See text for details about optical elements. 

2.3 Sarcomere length and anisotropy parameter measurement 

Sarcomere length (SL) and anisotropy parameter ρ were calculated using custom Matlab 
software (Matlab R2010a, Mathworks). 

First, isotropic SHG image, equivalent to SHG image obtained under circular polarization 
excitation, was reconstructed from the sum of the 4 P-SHG images [13,20]. The regular 
arrangement of sarcomeres within myofibrils can be evidenced by the typical striated pattern 
observed in SHG imaging (Fig. 2(a)). 

 

Fig. 2. Determination of the sarcomere length. (a) Isotropic SHG image reconstructed from the 
4 P-SHG images with the 4 input polarizations. The white rectangle highlights the ROI used 
for the determination of the sarcomere length. (b) Intensity plot profile of the ROI after 
rotation and binning. (c) Fourier transformation of the intensity plot profile. The sarcomere 
length is calculated from the maximum value of the peak at the lowest frequency. Scale bar 
20µm. 

The process used to extract the sarcomere length consisted in: 1/ selecting a region of 
interest (ROI) containing ~20-30 sarcomeres within a given myofibril (Fig. 2(a)), 2/ 
performing a 2D fast fourier transform (fft) of the ROI and searching for the position of the 
maximum to find the direction of the myofibril, 3/ rotating the ROI to align the myofibril 
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horizontally, 4/ applying a vertical binning to reduce noise and generating a 1D intensity plot 
profile along the myofibril (Fig. 2(b)), 5/ performing a 1D fft of the intensity plot profile and 
evaluating the sarcomere length from the maximum value of the lowest frequency peak (Fig. 
2(c)). The sarcomere length was evaluated for different ROIs selected within a single image 
in order to check for the repeatability and robustness of the measurement method. The typical 
dispersion of values was found to be around 0.05µm (standard deviation over 10 
measurements) for a mean value of 2.45µm, which means less than 2% dispersion for a single 
image. 

The 4 P-SHG images were processed according to the method proposed in [13] to extract 
the anisotropy parameter ρ for each pixel (Fig. 3). 

 

Fig. 3. Measurement of the anisotropy parameter ρ. Same specimen as in Fig. 2. (a) Four P-
SHG images corresponding to 4 input linear polarizations (0°, 45°, 90° and 135° with respect 
to horizontal image side). (b) Pixel map of anisotropy parameter ρ and (c) histogram of ρ. 
Scale bar 20µm. 

As demonstrated in [13], SHG intensity can be expressed as: 

 ( ) ( ) ( )cos 2 2 cos 4 4SHGI U V Wψ ψ φ ψ φ= + − + −  (1) 

where ψ is the input polarization angle, φ the orientation of the axis of cylindrical symmetry, 
and U, V, and W real quantities depending on the anisotropy parameter ρ. It is possible, with 
only 4 acquisitions corresponding to 4 input linear polarizations (0°, 45°, 90° and 135°) and 
simple arithmetic operations to extract the anisotropy parameter ρ. It was assumed, as usual, 
that myosin filaments can be described by rod shaped supramolecules of cylindrical C∞ 
symmetry with a dominant hyperpolarizability coefficient β, and that Kleinman symmetry 
conditions are fulfilled. It was also assumed that the anisotropy parameter ρ<1 to remove any 
ambiguity of the method using only 4 input polarizations. This latter assumption is reasonable 
according to the typical experimental values of anisotropy parameter found in the literature 
for myosin in skeletal muscle of mammalians, ranging from ~0.3 to ~0.8 depending on the 
physiological state and the animal. We point out that anisotropy parameter determination 
usually suffers from small systematic errors of the instrument that comes from high NA 
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focusing [21] or residual ellipticity of input polarizations [9]. In this study, the use of a 
0.75NA objective enables to neglect the influence of high NA focusing, polarizations mixing 
becoming sensitive from NA = 0.8 [9,22]. Then, the influence of residual ellipticity was 
evaluated by simulations and was found to be almost negligible with this method (less than 
1% deviation on the value of ρ for ρ = 0.6 with 5% residual ellipticity). 

The 4 input polarization method used here is very straightforward to implement and 
benefits from reduced acquisition time as compared to traditional methods based on more 
than 10 acquisition frames. Background noise was subtracted and pixels whose SHG intensity 
(calculated from isotropic SHG images) was below 10% of the full dynamic range were not 
processed for the calculation of ρ in order to exclude parts of myofibrils that are not in-plane. 
The repeatability on the determination of ρ was evaluated by performing 10 successive 
measurements on a given specimen. The variability of ρ for a selected pixel was found to be 
less than 1%, giving insight into the precision on the determination of ρ by our setup and 
method. For comparison between the two populations of rats, the mean value of ρ over all 
processed pixel was calculated for each pixel map. A pixel map of the anisotropy parameter 
[24] for a typical specimen is presented in Fig. 3(b) and the corresponding ρ-values histogram 
in Fig. 3(c). It can be noticed that the variability of anisotropy parameter for a given specimen 
(around 10%, see Fig. 3(c)) is well above the precision of the instrument (around 1%). 

2.4 Statistical analysis 

For each optical section of size ~1x0.2cm2, 3 distinct areas (142x142µm2) were imaged, 
which corresponds to 2 to 5 myofibrils depending on the optical section. The mean value of ρ, 
calculated over all significant pixels (10% threshold), was determined for each image. The 
mean sarcomere length was also determined for each image. This gives 4x3 = 12 values of SL 
and ρ per specimen, and 28x3 = 84 values of SL and ρ per group of specimens. Results were 
represented as statistical box plots (Fig. 4(a) for SL and Fig. 4(d) for ρ) where the whiskers 
represent extremal values, the boxes represent the 25-75 percentiles and the filled squares 
indicate the mean value of the population. A Mann-Whitney non-parametric test was used to 
assess the statistical difference (p < 0.05) between the two populations. 

3. Results 

A loss of muscular weight (20-25%) was observed for rats of the septic group in the lateral 
and medial gastrocnemius, which validates the presence of sepsis [17]. The comparison of SL 
between control and septic specimens is presented in Fig. 4(a) as statistical box plot. 
Representative isotropic SHG images of a healthy and a septic specimen are displayed in Fig. 
4(b) and Fig. 4(c), respectively. Sarcomere lengths are comparable with the values found in 
the literature for skeletal muscle of mammalians (1.2-2.4µm in [10] for mouse, 2.4-4.4µm in 
[15] for rabbits, 2.0µm in [25] for rats, 1.6-2.0µm in [26] for mice). No statistical difference 
(p>0.1) can be evidenced between control (2.39 ± 0.23µm) and septic (2.44 ± 0.22µm) groups 
according to the mean sarcomere length, suggesting that sepsis does not affect the regular 
organization of striated muscle at this scale. No obvious degradation of sarcomeres and no 
contraction or stretching of EDL muscles were evidenced by classical SHG imaging in these 
experiments. 

The comparison of ρ between control and septic specimens is presented in Fig. 4(d). 
Representative anisotropy parameter pixel maps of a healthy and a septic specimen are 
displayed in Fig. 4(e) and Fig. 4(f), respectively. Anisotropy parameter values lie in the range 
of values found in the literature for skeletal muscle of mammalians (0.5-0.6 in [13], 0.50-0.73 
in [14], 0.46-0.68 in [15], 0.54-0.70 in [16], 0.29-0.52 in [30]). The experiments demonstrate 
a statistical difference (p<0.001) between control (0.575 ± 0.036) and septic (0.499 ± 0.050) 
groups according to the mean anisotropy parameter, which is significantly lower in the septic 
group than in the control group. This result first indicates that anisotropy parameter can be 
considered as a discriminating parameter to distinguish between control and septic specimens, 
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in view to evaluation and diagnosis of CIPNM induced by sepsis. This result also suggests an 
alteration of muscle structure at the sub-sarcomere scale at first stage of sepsis, which cannot 
be evidenced by classical intensity-based SHG imaging. This alteration can be explained by a 
modification of myosin conformation and/or organization as detailed in the discussion. 

 

Fig. 4. Comparison of (a) sarcomere length (SL) and (d) anisotropy parameter ρ between 
control and septic groups. Representative isotropic SHG images (b,c) and anisotropy parameter 
pixel maps (e,f) of a control (b,e) and a septic (c,f) specimen, with the same colormap range as 
in Fig. 3. * p < 0.001. 

4. Discussion 

In P-SHG experiments, anisotropy parameter is sensitive to the structural distribution of 
hyper Rayleigh scattering (HRS) emitters within the focal excitation volume of the 
microscope objective [9]. However, relationship between the distribution of HRS emitters and 
anisotropy parameter is highly underdetermined because many different distributions of HRS 
emitters can lead to the same value of ρ. Myosin thick filaments are composed of a 
juxtaposition of long polypeptide α-helices, elementary HRS emitters lying in C-N bonds of 
amide groups [10]. All HRS emitters are almost planar and tilted at a fixed polar angle with 
respect to the helical axis. Moreover, myosin has a particular geometrical structure because in 
addition to the static thick filament, it is also composed of a dynamic part made of two-heads 
supported by a coiled coil rod-like structure that links myosin heads to the thick filament. In 
the case of myosin, one can reasonably assume that modification of anisotropy parameter can 
have three origins. The first possibility is a modification of the α−helix pitch angle, assuming 
a perfectly planar and parallel organization between α-helices and no contribution to SHG of 
the dynamic part of myosin [13,16]. The second possibility is a reorganization of α-helices 
leading to a change of their orientation distribution and thus of the HRS emitters orientation 
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distribution, as already established for collagen [23]. The last possibility is a modification of 
the conformation of myosin heads [14,15]. Indeed, it was interestingly established in [15] that 
a non-negligible part of SHG in fact originates from the dynamic part, enabling P-SHG to 
probe several physiological states of myosin, particularly the fraction of myosin heads 
attached to actin, also called cross-bridges. 

At this stage, it is not possible to fully assess the origin of the decrease of the anisotropy 
parameter, but we can try to link this observation with some biological processes proposed in 
the case of sepsis. Firstly, a decrease of anisotropy parameter could indicate an increase of the 
α−helix pitch angle of myosin [13,16]. It was established [27,28] that sepsis could induce a 
transformation of muscle fibers of type 2 (medium and large diameter) into muscle fibers of 
type 1 (small diameter). This transformation is consistent with the decrease of active force 
and is supported by the diminution of myofibrils diameter observed for septic specimens [17]. 
As each type of muscle fiber involves a particular isoform of myosin, the microscopic 
difference between the two isoforms could lie in their α−helix pitch angle. This interpretation 
has to be confirmed by P-SHG experiments on isolated myosin fibrils of each isoform. 
Secondly, the decrease of the anisotropy parameter could be induced by a broadening of 
myosin α-helices orientations. Sepsis is characterized by a degradation of contractile and 
regulatory myofilament proteins, mostly titin and desmin, as a result of both increased 
proteolysis and decreased transcription [27]. Myosin is also degraded and its degradation 
could manifest as a disorganization of α-helices at the sub-sarcomere scale. Finally, a 
decrease of anisotropy parameter could indicate a diminution of the number residual cross-
bridges at rest [15]. Although this interpretation is not consistent with the increase of passive 
force observed on septic rats, which would suggest on the contrary an increase of residual 
cross-bridges [29], this could be explained by an alteration of troponin or tropomyosin, which 
rule the formation of cross-bridges. Indeed, an important decrease of protein expression and 
particularly of tropomyosin concentration was shown to be induced by sepsis in rapid and 
slow muscle fibers, releasing binding sites of myosin heads on actin [27]. Nevertheless, 
increase in passive force could also be related to modifications in other proteins such as titin, 
masking an effect on cross-bridges. 

In order to go further into the understanding of microstructural organization of 
myofilaments and the consequences of sepsis, dynamic experiments will have to be carried 
out. Determination of the anisotropy parameter at rest, at full contraction and during 
contraction should enable to better analyze the behavior of actin/myosin complex and its 
alteration by sepsis. Currently, most of P-SHG techniques suffer from a lack of temporal 
resolution, preventing from imaging large areas at sufficient speed. Efforts need to be done in 
this direction [30], as already engaged by our team [31]. In addition, analyzing both forward 
and backward P-SHG will help to get better insight into the spatial distribution of HRS 
emitters and thus the structural organization of myosin [32]. Finally, turning these 
experiments to clinical conditions should benefits from recent advances in nonlinear 
endomicroscopy [33]. However, P-SHG experiments conducted in vivo on thick intact muscle 
fibers will have to cope with strong backscattering of second harmonic light [32] and care 
should be taken to obtain a good discrimination of septic specimens according to the 
anisotropy parameter in these conditions. Backward P-SHG experiments on histological slices 
and thick intact muscle fibers of septic and control specimens are currently in progress. 

5. Summary 

In this study, a significant difference was highlighted between control and septic specimens 
according to the P-SHG anisotropy parameter ρ, indicating that P-SHG is promising for 
diagnosis of CIPNM and possibly long term sequelae prediction. Classical SHG images of the 
striated muscle pattern do not suggest any significant and observable difference between the 
two groups according to the regularity of the sarcomeres, suggesting a modification of myosin 
conformation/organization at the sub-micrometer scale. These results could help to better 
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understand microscopic structural effects of neuromyopathy acquired in ICU. More generally 
and in the longer term, in addition with the classical advantages conferred by SHG 
microscopy (optical sectioning, label-free,...), P-SHG holds great promise for the 
development of biomedical technology for clinical diagnosis of muscular pathologies 
involving alteration of sub-micrometric structures within the sarcomere. 
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